Detrás del algoritmo: ¿Nuevo trabajo online o nueva esclavitud del obrero de dato?

Para que la inteligencia artificial converse como una persona, escriba como los ángeles y nos recomiende una película como si nos conociera de todo la vida, necesita que un ejército de cientos de miles de seres humanos le enseñe. En otras palabras, que etiqueten y clasifiquen billones de datos. Son anónimos trabajadores, mal pagados y sin derechos laborales. ¿Bienvenidos al trabajo del futuro?

Oskarina Fuentes  enciende su ordenador y accede a la cola de tareas. Cada una con un título y la clave del cliente, una gran corporación que permanece en el anonimato; también ve en la pantalla cuánto puede ganar si la completa. No llega a un dólar por hora. Fuentes, una ingeniera venezolana que emigró a Colombia, comienza su jornada laboral, que se alargará diez, doce horas, las que hagan falta. Es etiquetadora. Ve, por ejemplo, una foto de un producto que se vende on-line y escribe en un recuadro si se trata de un bolso, una mochila o un macuto. Esa asignación debería ser automática. Pero la diferencia es demasiado sutil para el algoritmo, que aún no sabe distinguirlos, así que necesita un ojo humano que lo guíe. Para la máquina, todo son bolsas.

Despectivamente, se los considera ‘microtrabajadores’ porque realizan microtareas simples y repetitivas. Están disponibles día y noche porque la competencia es feroz

Fuentes trabaja para una plataforma de microempleo australiana, pero compite con gente de todos los continentes; la mayoría, ubicados en países en desarrollo. Despectivamente, se los considera microtrabajadores porque realizan microtareas simples y repetitivas. Fuentes ve en una esquina de la pantalla el recuento de sus ganancias en céntimos. No puede retirar el dinero hasta que alcanza un mínimo de diez dólares. Está disponible día y noche porque la competencia es feroz. Y cualquier derecho laboral se disuelve en la jungla de los empleos transfronterizos. Son los siervos de la inteligencia artificial (IA) que asombra al mundo, pero que no es tan inteligente como la pintan. Ni el machine learning es un aprendizaje tan automático.

Las grandes tecnológicas no nos habían contado que para que sus redes neuronales operen con tan sorprendente eficacia necesitan un ejército internacional de cientos de miles de etiquetadores que clasifiquen los billones de datos con los que se alimentan; y que entrenan a los algoritmos colocando post-its virtuales para aclararles que eso que cruza la calle no es una sombra, sino un gato. Para un coche autónomo, puede ser la diferencia entre frenar o un accidente.

«Entrenan a los algoritmos colocando ‘post-its’ virtuales para aclararles que lo que cruza la calle no es una sombra, sino un gato. Para un coche autónomo, puede ser la diferencia entre frenar o un accidente»

Recientemente se filtraron imágenes capturadas en 2020 por aspiradoras robots: una joven sentada en el inodoro, un niño tumbado en el suelo… En total, 15 fragmentos captados en Estados Unidos, España, Francia, Alemania y Japón que se compartieron en Facebook y Discord y que fueron encontrados por una periodista de la MIT Technology Review. Los vídeos fueron subidos por microtrabajadores que etiquetaban esas imágenes en unas pruebas para mejorar la capacidad de reconocimiento del electrodoméstico. Este suceso revela una nueva amenaza a la privacidad en la era digital, pero también es un recordatorio de que todavía hay «humanos en el bucle», como se dice en la jerga de Silicon Valley, para referirse a las personas que realizan tareas que creíamos automatizadas.

El señor detrás de la cortina

Las máquinas, que se basan en la detección de patrones y relaciones en un océano de datos, todavía nos necesitan para entender el contexto, aclarar dudas y no meter la pata. Es un trabajo valioso, pero está tan poco reconocido que incluso se recluta a presos en las cárceles para realizarlo. Se hizo en Finlandia y se sigue haciendo en China.

«Se trata de un mundo en expansión oculto bajo la tecnología», afirma Mary Gray, antropóloga de Microsoft y coautora del libro Ghost work, que explora este mercado. «Los trending topics, las compras on-line, los chatbots… involucran a humanos que realizan tareas externalizadas en plataformas de trabajo en masa (crowdsourcing). La verdad es que la IA es tan automática como la famosa escena de El mago de Oz donde Dorothy y sus amigos descubren que hay un señor que mueve palancas 0detrás de una cortina».

Las microtareas se asignan en tiempo real. Una empresa tecnológica ahorra costes y el precioso tiempo de sus ingenieros y programadores contratando a una compañía de etiquetado como Alegion, Hive o Scale AI, el líder de un sector en expansión y que tiene entre sus clientes a LinkedIn, Airbnb, el Pentágono y OpenAI, la empresa que ha maravillado con sus modelos de IA que generan imágenes y textos. Cada compañía de etiquetado dispone de una plataforma en línea a la que se pueden apuntar trabajadores autónomos de todo el mundo y que optan a la tarea. Un método que inventó Amazon.

A veces, el que primero la pide tiene preferencia, como sucede en las aplicaciones de riders (‘repartidores’) o conductores VTC. Así que muchos tienen alarmas conectadas al ordenador día y noche para estar al quite. Otras se realizan por subasta. El empleador asigna el trabajo según la reputación adquirida por el candidato y también según su ubicación. Como se suele pagar de acuerdo con el salario mínimo de cada país, buena parte del flujo de trabajo va hacia la India, Filipinas, Marruecos, Kenia, Brasil, Venezuela… En Estados Unidos se viene pagando la hora a 7 dólares; en Malasia, a 3; en Venezuela, a 80 céntimos… La picaresca está servida y algunos trabajadores utilizan conexiones VPN para simular que están en países con salarios algo más altos.

En India, muchos trabajan en almacenes que recuerdan a talleres textiles. Otros, desde casa. Basta con una wi-fi decente. Ganan entre 150 y 200 dólares al mes. A veces, padres e hijos se turnan a lo largo de las 24 horas

A las afueras de Calcuta (India), Namita Pradhan se pasa el día mirando vídeos de colonoscopias grabados en hospitales para identificar pólipos que pueden derivar en un cáncer. Cuando cree que ha encontrado uno, lo marca con el ratón y dibuja un lazo digital a su alrededor. No tiene formación médica, excepto una videoconferencia impartida por un radiólogo. Pradhan está ayudando a enseñar a un sistema de IA a no confundir un pólipo con una inflamación. Resulta irónico que, con el tiempo, esa IA podría sustituir a un médico. Trabaja para una empresa de etiquetado en unas oficinas con apariencia de call center con otras varias decenas de jóvenes indios. Ganan entre 150 y 200 dólares al mes. Otros trabajan en almacenes que recuerdan a talleres textiles. Y otros muchos desde casa. Basta una conexión decente a Internet. A veces, padres e hijos se turnan. En algunos casos, cuando la tarea implica la moderación de vídeos violentos o de contenido sexual, el trabajo se puede volver espeluznante. «Horas y más horas de porno y decapitaciones. Cuando ves estas cosas por primera vez es perturbador. No quieres volver a hacerlo. Pero, cuando no te puedes permitir el lujo de renunciar, simplemente lo haces», resume Kristy Milland, una exetiquetadora norteamericana.

«¿Estos son los empleos del futuro?», se pregunta Darrell West, experto en automatización de la Brookings Institution. Y advierte: «Tenemos que replantearnos la calidad de los trabajos que se están creando con la IA. Y que, no lo olvidemos, amenaza al mismo tiempo con eliminar otros muchos empleos de calidad que serán automatizados». Según una consultora, el 80 por ciento de este nuevo trabajo es a tiempo parcial, aunque las jornadas sean interminables; se paga por pieza o tarea completada; no se cotiza, no hay protección social… Los más críticos consideran que se ha vuelto a un sistema feudal. Y otros recuerdan que los grandes avances tecnológicos siempre han requerido mano de obra barata y reemplazable.

Fuente: La Voz de Galicia